Enthalpies and heat capacities of Li₂SiO₃ and Li₂ZrO₃ between 298 and 1400 K by drop calorimetry ¹

H. Kleykamp

Kernforschungszentrum Karlsruhe GmbH, Institut für Materialforschung I, Postfach 3640, 76021 Karlsruhe, Germany

(Received 4 October 1993; accepted 7 November 1993)

Abstract

The enthalpies of Li_2SiO_3 and Li_2ZrO_3 were measured between 368 and 1414 K by an isoperibol Setaram HTC 1800 drop calorimeter. The calibration procedure is described. The smoothed enthalpies between 298 and 1400 K are:

$$H_{T}^{\circ} - H_{298}^{\circ} \langle \text{Li}_{2}\text{SiO}_{3} \rangle = -51157 + 125.860T + 0.01713T^{2} + 3614467T^{-1} \text{ J/mol}$$

$$H_{T}^{\circ} - H_{298}^{\circ} \langle \text{Li}_{2}\text{ZrO}_{3} \rangle = -46453 + 134.857T + 0.00740T^{2} + 1671251T^{-1} \text{ J/mol}$$

The standard deviation is $\approx 3\%$. The heat capacities were derived by differentiation. The values extrapolated to 298 K are:

 $C_{p,298}$ $\langle \text{Li}_2 \text{SiO}_3 \rangle = (95.4 \pm 3.1) \text{J/K mol}$ $C_{p,298}$ $\langle \text{Li}_2 \text{ZrO}_3 \rangle = (120.4 \pm 3.0) \text{J/K mol}$

INTRODUCTION

Lithium ceramics are being considered as possible solid breeder materials in the blanket of future fusion reactors. The role of the breeder materials is to produce tritium atoms, which act as fuel components of the reactor. As the heat generated by the nuclear fusion reaction is absorbed by the blanket and is transferred to the coolant, the thermal properties of breeder materials, such as enthalpy and heat capacity, are of primary importance for the design of a blanket system.

EXPERIMENTAL

Materials

The lithium metasilicate (Li_2SiO_3) as delivered had been prepared from an aqueous suspension of amorphous silicon dioxide and lithium hydroxide

¹ Paper presented at 10. Ulmer Kaloriemetrietage, Ulm, 17-19 March 1993.

hkl	$d_{ m obs}/ m pm$	Rel. intensity	$d_{\rm calc}/{ m pm}$	
020			469.80	
110	468	v. st.	468.53	
111	330.3	v. st.	330.45	
130	050 0		270.99	
200	270.9	v. st.	270.26	
131	004.0		234.28	
220	234.2	st.	234.26	
002	233.00	st.	233.07	
022	000 50		208.79	
112	208.79	m.	208.67	
150	177.44	w .	177.50	
310	15(05		176.95	
132	176.95	m.	176.70	
202	176.41	m.	176.50	
241	165.60		165.71	
311	105.69	m.	176.43	
060	156.65	m.	156.60	
330	156.02	m.	156.18	
113	147.45	w .	147.48	
152	141.36		141.21	
242	141.26	w.	141.11	
312	140.98	w.	140.93	
260	135.52	w.	135.50	
133	134.94	m.	134.79	
350	120.05		130.05	
062	130.05	m.	129.98	
223	129.52	m.	129.49	
171	125.44	w.	125.46	

TABLE 1

X-ray diffraction patterns of Li₂SiO₃ at room temperature

which gave X-ray amorphous Li₂SiO₃ · H₂O. This was followed by spray drying and by calcination above 250°C [1]. The product comprised a single phase. Li₂SiO₃ is orthorhombic, space group $Cmc2_1$ (No. 36) [2–4]. The material was granulated, re-compacted and annealed at 900°C for 2 h in air to remove absorbed H₂O and CO₂ immediately before the X-ray diffraction and enthalpy measurements. X-ray diffraction was carried out at room temperature by the Guinier method with Cu K α_1 radiation ($\lambda = 154.060$ pm) and calibration with an internal NaCl standard (a = 564.02 pm). The positions of the diffraction lines were determined with a Huber comparator, the intensities being estimated by visual examination. The lattice parameters were calculated by an optimization programme which gave the results $a = (540.5 \pm 0.1)$ pm, $b = (939.6 \pm 0.2)$ pm, $c = (466.1 \pm 0.1)$ pm. The Xray diffraction pattern is given in Table 1.

X-ray diffraction patterns of Li₂ZrO₃ at room temperature

hkl	$d_{\rm obs}/{\rm pm}$	Rel. intensity	$d_{\rm calc}/{\rm pm}$	
020	451.4	m.	451.53	
110	437.3	v . st.	437.83	
-111	404.98	st.	403.83	
021	335.71	v. st.	335.28	
111	285.37	m.	285.33	
130	057.00	-4	257.97	
-112	257.88	st.	257.95	
-131			250.46	
200	250.42	st.	250.30	
002			250.28	
-221	231.33	st.	231.12	
040	225 76		225.76	
-202	223.70	v. st.	225.74	
220	210.00		218.92	
022	218.88	m.	218.90	
131	212.72	v. st.	212.75	
041	205.63	m .	205.80	
-222	201.71	w.	201.92	
112	191.22	m .	191.28	
221	179.62	m.	179.58	
-311	177.05	~	177.04	
-113	177.05	m.	177.03	
-241	173.15	W.	172.98	
150	160.00		169.89	
-312	109.88	St.	169.88	
-151			167.69	
240	167.75	st.	167.65	
042			167.64	
310	164.00		164.09	
132	164.08	m.	164.09	
-223	161.49	st.	161.52	
-242	159.64	m .	159.63	
023	156.50	m .	156.51	
151			154.83	
-331	154.90	st.	154.83	
-133			154.82	

The delivered lithium metazirconate (Li_2ZrO_3) had been prepared by reaction of lithium hydroxide and zirconium *n*-proposide in methanol. The product was obtained by substitution of the alcohol by water and by spray drying. This was followed by calcination at 650°C for 2 h in air [5]. The product consisted of a single phase. Li_2ZrO_3 is very hygroscopic and exists between 750 and 1000°C under normal pressure only in one modification [6]; it is monoclinic, space group Cc (No. 9) [7] or C2/c (No. 15) [8]. The

Fig. 1. Sensitivity factor S_T as a function of temperature of the Setaram HTC 1800 calorimeter measured with α -Al₂O₃ in different detectors.

material was granulated, re-compacted and annealed at 900°C for 2 h in air to remove H₂O and CO₂ before the X-ray diffraction and enthalpy measurements. The obtained lattice parameters were $a = (542.5 \pm 0.1)$ pm, $b = (903.1 \pm 0.2)$ pm, $c = (542.5 \pm 0.1)$ pm, $\beta = (112.65 \pm 0.02)^{\circ}$. The Xray diffraction pattern is given in Table 2.

Calorimetry

The enthalpy measurements were carried out by the drop method using the high temperature calorimeter HTC 1800 from the manufacturer Setaram S.A. (Lyon, France). The calorimeter is an instrument of the isoperibol type and operates according to the heat flow principle [9]. The detector is made up of two alumina crucibles, one above the other, which are surrounded by two crown-shaped piles of 18 + 18 Pt-6% Rh/Pt-30% Rh thermocouples, each pile in one axial plane. Isothermal measurements were made under argon by dropping samples of mass around 100 mg and initially at room temperature (25°C) through a lock into the working cell of the preheated calorimeter. The temperature drift was < 0.5 K in 1 h.

T/K	$H^{\circ}_{T} - H^{\circ}_{298}/(\mathrm{J})$	/mol)	Deviation/%	
	Exp.	Calc.		
372	7613	7750	-1.80	
445	16751	16366	2.30	
475	19968	20102	-0.67	
551	31625	29953	5.29	
578	33359	33567	-0.62	
638	41668	41781	-0.27	
679	45686	47524	-4.02	
747	56932	57259	-0.57	
823	68307	68422	-0.17	
923	84062	83523	0.64	
970	89301	90773	-1.65	
1072	109769	106825	2.68	
1123	114125	115008	-0.77	
1175	125851	123458	1.90	
1222	132614	131185	1.08	
1277	135254	140334	-3.76	
1313	146802	146385	0.28	
1342	146534	151295	-3.25	
1379	167971	157609	6.17	
1411	152531	163102	-6.93	
1414	174723	163619	6.36	

Experimental results of the enthalpy of Li₂SiO₃

The quality of the instrument is characterized by the sensitivity factor S_T , which is the proportionality factor between the measured heat Q_T consumed by the sample from the surroundings, given in millivolt seconds per mole of the sample, and by the molar enthalpy $H_T^{\circ} - H_{298}^{\circ}$ given in J/mol:

$$Q_T = S_T (H_T^{\circ} - H_{298}^{\circ})$$

The calibration was effected by use of the tabulated enthalpy of α -Al₂O₃ [10]. Spheres (sapphire, NIST quality), were used with a mass of about 60 mg. The sensitivity factor given in μ V/mW was determined up to 1750 K. It is strongly temperature dependent and increases for the preselected electronic amplification up to 1.0 μ V/mW at 800 K, passes through a flat maximum and then falls to $\approx 0.7 \,\mu$ V/mW at 1750 K owing to increased heat loss by radiation; see Fig. 1. The sensitivity factor is further dependent on the type of detector and on the axial position (height) of the sample in the crucible within a series of successive drops. The background signal is below 0.5 μ V. With a sensitivity factor $S = 1 \,\mu$ V/mW, this gives a detection limit close to 0.5 mW.

T/K	${H_{T}^{\circ}}-{H_{298}^{\circ}}/{({ m J}_{298})}$	/mol)	Deviation/%	
	Exp.	Calc.		
368	8541	8718	-2.07	
448	20052	19179	4.36	
545	32974	32309	2.02	
615	40456	42000	-3.82	
674	49534	50282	-1.51	
768	64582	63658	1.43	
802	70227	68545	2.39	
829	71966	72445	-0.66	
866	74763	77812	-4.08	
900	81322	82769	-1.78	
909	85837	84084	2.04	
967	92722	92601	0.13	
999	95491	97326	-1.92	
1003	96243	97918	-1.74	
1025	99985	101180	-1.19	
1052	109000	105194	3.49	
1071	110096	108026	1.88	
1107	118014	113411	3.90	
1115	113929	114610	-0.60	
1168	119342	122585	-2.72	
1207	136340	128483	5.76	
1254	135987	135625	0.27	
1306	141346	143570	-1.57	
1309	143485	144030	-0.38	
1380	152180	154951	-1.82	
1410	159308	159591	-0.18	

Experimental results of the enthalpy of Li₂ZrO₃.

The enthalpies of each Li_2SiO_3 and Li_2ZrO_3 sample were measured at a preselected temperature by a preceding and a subsequent calibration of the instrument with α -Al₂O₃. The average of the two calibrations was taken for calculation of the sensitivity factor of the corresponding enthalpy measurement.

RESULTS

The enthalpies $H_T^{\circ} - H_{298}^{\circ}$ of Li₂SiO₃ and Li₂ZrO₃ were measured in the temperature ranges 372-1414 K and 368-1410 K respectively. Mass losses up to 0.5% after the experiments were observed above these temperatures. The experimental results compiled in Tables 3 and 4 were fitted to a polynomial by the least squares method using $H_T^{\circ} - H_{298}^{\circ} = a + b \cdot T + c \cdot T^2 + d \cdot T^{-1}$, which gives

T/K	$H^{\circ}_{T} - H^{\circ}_{298}/(\mathrm{J/mol})$					
	Barin [13]	Bennington et al. [11]	Brandt and Schulz [12]	Kleykamp (this work)		
298	0	0	0	0		
300	186	184	195	191		
400	11312	11284	11258	10965		
500	23677	23845	23913	23285		
600	36796	37371	37490	36551		
700	50501	51610	51703	50503		
800	64710	66379	66407	65014		
900	79363	81630	81523	80010		
1000	94411	97278	97003	95450		
1100	109808	113240	_	111305		
1200	125518	129537	_	127557		
1300	141513	(146105)	_	144194		
1400	157775	(162904)	_	161207		
Method	crit. tables	drop cal.	DSC	drop cal.		

Enthalpy $H^{\circ}_{T} - H^{\circ}_{298}$ of Li₂SiO₃

TABLE 6

Enthalpy $H_T^\circ - H_{298}^\circ$ of Li₂ZrO₃

<i>T</i> /K	$H_T^\circ - H_{298}^\circ/(\mathrm{J/mol})$						
	Barin [13]	Hollenberg and Baker [15]	Cordfunke et al. [15]	Kleykamp (this work)			
298	0	0	0	0			
300	203	258	216	241			
400	12254	13396	12422	12852			
500	25661	27010	25600	26168			
600	39874	41102	39411	39911			
700	54657	55671	53712	53960			
800	69890	70717	68428	68257			
900	85509	_	(83527)	82769			
1000	101473	-	(98967)	97474			
1100	117758	_	-	112362			
1200	134347	_	-	127423			
1300	151229	-	_	142651			
1400	168394	_	_	158043			
1500	185838	-	_	_			
Method	crit. tables	DSC	adiab. + drop cal.	drop cal.			

172.0

drop cal.

meat cape								
T/K	$C_p/(\mathrm{J/K} \mathrm{mol})$							
	Barin [13]	Bennington et al. [11]	Brandt and Schulz [12]	Kleykamp (this work)				
298	100.5	99.9	97.5	95.4				
300	101.0	100.4	98.2	96.0				
400	118.8	119.5	120.3	117.0				
500	127.8	131.0	131.8	128.5				
600	134.3	139.1	139.3	136.4				
700	139.7	145.3	144.8	142.5				
800	144.4	150.3	149.2	147.6				
900	148.6	154.5	153.0	152.2				
1000	152.3	158.2	156.5	156.5				
1100	155.6	161.4	-	160.6				
1200	158.6	164.3	_	164.5				
1300	161.3	(166.9)	_	168.3				

TABLE 7

1400

Method

Heat capacity C_p of Li₂SiO₃

163.9

crit. tables

$$H_{T}^{\circ} - H_{298}^{\circ} \langle \text{Li}_{2}\text{SiO}_{3} \rangle = -51157 + 125.860T + 0.01713T^{2} + 3614467T^{-1} \text{ J/mol}$$
$$H_{T}^{\circ} - H_{298}^{\circ} \langle \text{Li}_{2}\text{ZrO}_{3} \rangle = -46453 + 134.857T + 0.00740T^{2} + 1671251T^{-1} \text{ J/mol}$$

(169.1)

drop cal.

between 298 and 1400 K. The 68% standard deviations of the experiments are 3.3% and 2.5% respectively. The enthalpies of Li₂SiO₃ and Li₂ZrO₃ are given numerically in 100 K intervals in Tables 5 and 6.

DSC

The heat capacities of Li_2SiO_3 and Li_2ZrO_3 were evaluated by differentiation of the enthalpy polynomials, which gives

 $C_{p,T} \langle \text{Li}_2 \text{SiO}_3 \rangle = 125.860 + 0.03426T - 3614467T^{-2} \text{ J/K mol}$

 $C_{n,T}$ (Li₂ZrO₃) = 134.857 + 0.01480T - 1671251T⁻² J/K mol

The heat capacities of Li_2SiO_3 and Li_2ZrO_3 are illustrated as a function of temperature in Figs. 2 and 3 and are given numerically in 100 K intervals in Tables 7 and 8. The heat capacities at 298 K are

$$C_{p,298} \langle \text{Li}_2 \text{SiO}_3 \rangle = (95.4 \pm 3.1) \text{ J/K mol}$$

 $C_{p,298} \langle \text{Li}_d \text{ZrO}_3 \rangle = (120.4 \pm 3.0) \text{ J/K mol}$

It should be noted that the results at 298 K are extrapolated values from the experimental temperature range above 368 K.

Fig. 2. Heat capacity C_p of Li₂SiO₃.

Fig. 3. Heat capacity C_p of Li₂ZrO₃.

H.	K
----	---

T/K	$C_{\rho}/(\mathrm{J/K} \mathrm{mol})$						
	Barin [13]	Hollenberg and Baker [15]	Kennedy [16]	Cordfunke et al. [14]	Kleykamp (this work)		
298	109.5	128.9	110	114.6	120.4		
300	110.0	129.0	110	114.9	120.7		
400	128.7	133.8	126	127.8	130.3		
500	138.7	138.5	135	135.3	135.6		
600	145.2	143.3	141	140.7	139.1		
700	150.2	148.1	144	145.2	141.8		
800	154.3	(152.8)	146	149.1	144.1		
900	158.0	_	147	(152.7)	146.1		
1000	161.3	_	(149)	(156.2)	148.0		
1100	164.4	_	_	_	149.8		
1200	167.4	-	_	-	151.5		
1300	170.2	-	_	-	153.1		
1400	173.1	_	-	-	154.7		
1500	175.8	_	_	-	-		
Method	crit. tables	DSC	DSC	adiab. + drop cal.	drop cal.		

Heat	capacity	of	C_p	of	Li_2Zr	O 3
------	----------	----	-------	----	----------	------------

DISCUSSION

The enthalpy of Li₂SiO₃ has so far been measured by Bennington et al. [11] by drop calorimetry in the temperature range 298–1404 K. The heat capacity was calculated by differentiation of the enthalpy. The heat capacity of Li₂SiO₃ was determined by Brandt and Schulz [12] by differential scanning calorimetry in the range 298–1000 K. The enthalpy was evaluated by integration of the heat capacity. The thermodynamic data of these authors [11,12] compiled in Tables 5 and 7 agree well with the enthalpy and the heat capacity measured in this study. However, the experimental results at temperatures above 500 K are higher than the enthalpy and the heat capacity of Li₂SiO₃ estimated by Barin [13] and in the JANAF tables [10], which were generated by application of Neumann–Kopp's rule to the constituent oxides Li₂O and SiO₂; see Fig. 2.

The enthalpy of Li_2ZrO_3 was measured previously by Cordfunke et al. [14] by drop calorimetry in the range 477-815 K. The heat capacity was calculated by differentiation of the enthalpy and the data were extrapolated to 1000 K. Low temperature heat capacity measurements between 6 and 372 K were made by adiabatic calorimetry [14]. The heat capacity of Li_2ZrO_3 was determined by Hollenberg and Baker [15] by differential scanning calorimetry between 350 and 750 K. The enthalpy in Table 6 was calculated by use of Hollenberg and Baker's analytical expression for the heat capacity, $c_p = 0.179 + 7.45 \times 10^{-5}T + 1.126T^{-2}$ cal/K g. Other heat capacity data on Li₂ZrO₃ obtained by differential scanning calorimetry were reported by Kennedy [16] in graphical form between 300 and 900 K. The enthalpy could not be obtained by integration of these measurements. The thermodynamic data of these authors [14–16] compiled in Tables 6 and 8 are somewhat higher than the enthalpy and the heat capacity measured in this study. However, all experimental results at temperatures above 500 K are lower than the enthalpy and the heat capacity of Li₂ZrO₃ given by Barin [13], which are based on an estimate by Kubaschewski [17]. The heat capacity of Li₂ZrO₃ is illustrated in Fig. 3.

The experiments on the enthalpy of Li_2SiO_3 and Li_2ZrO_3 between 298 and 1400 K have demonstrated that the use of a Setaram HTC 1800 calorimeter (1987/89 series) in this laboratory gives results with a temperature average 68% standard deviation of not less than 2.5%. This can be attributed to the short isothermal zone in the z-direction of the furnace and to the arrangement of the thermopile for the crucible of the detector in one plane perpendicular to the z-axis. It is hoped that these deficiencies will be eliminated in the present version of the instrument.

ACKNOWLEDGEMENTS

The author gratefully acknowledges the supply of materials by Dr. H. Wedemeyer, the experimental work by Mr. W. Laumer and the lattice parameter calculations by Dr. A. Skokan.

REFERENCES

- 1 D. Vollath and H. Wedemeyer, Adv. Ceram., 25 (1989) 93.
- 2 D. Donnay and J.D.H. Donnay, Am. Mineral., 38 (1953) 163.
- 3 A.R. West, J. Am. Ceram. Soc., 59 (1976) 118.
- 4 K.F. Hesse, Acta Crystallogr., Sect. B, 33 (1977) 901.
- 5 D. Vollath and H. Wedemeyer, J. Nucl. Mater., 179-181 (1991) 793.
- 6 A. Skokan, Proc. 16th Symp. Fusion Technol., London, 1990, North-Holland, Amsterdam, 1991, p. 772.
- 7 G. Dittrich and R. Hoppe, Z. Anorg. Allg. Chem., 371 (1969) 306.
- 8 J.L. Hodeau, M. Mareizo, A. Santoro and R.S. Roth, J. Solid State Chem., 45 (1982) 170.
- 9 J. Mercier, J. Therm. Anal., 14 (1978) 161.
- 10 M.W. Chase, C.A. Davies, J.R. Downey, D.J. Frump, R.A. McDonald and A.N. Syverud (Eds.), JANAF Thermochemical Tables, 3rd edn., Am. Chem. Soc. and Am. Inst. Phys., 1985.
- 11 K.O. Bennington, M.J. Ferrante and J.M. Stuve, Report BMRI-8187, 1976.
- 12 R. Brandt and B. Schulz, J. Nucl. Mater., 152 (1988) 178.
- 13 I. Barin, Thermochemical Tables of Inorganic Substances, Verlag Chemie, Weinheim, 1989.

- 14 E.H.P. Cordfunke, R.R. van der Laan, G.P. Wyers and J.C. van Miltenburg, J. Chem. Thermodyn., 24 (1992) 1251.
- 15 G.W. Hollenberg and D.E. Baker, Report HEDL-SA-2674-FP, Hanford Engineering Development Laboratory, 1982.
- 16 P. Kennedy, Proc. 14th Symp. Fusion Technol., Avignon, 1986, North-Holland, Amsterdam, 1987, p. 1013.
- 17 O. Kubaschewski, High Temp. High Press., 4 (1972) 1.